MEASURING EFFORT FOR MODIFYING SOFTWARE PACKAGE AS REUSABLE PACKAGE USING PACKAGE SPECIFICATION MINING

P. Ranjani¹, R. Kamalraj², A. Indira³

¹, ³AP, IT, Faculty of Engineering, Avinashilingam University, India
²AP, CSE, SNS College of Technology, India
jothiranjani@gmail.com, mailtokamalraj@yahoo.com

Abstract

In any engineering field the data associated with knowledge is important one for taking decisions for solving problems in the current system development. The specification mining can give support for analyzing collected data to help the project management team to fulfill their responsibilities. In this paper ‘Package Specification Mining’ is designed by using packages’ reusability quality factor. It supports to give effort required for modifying the package to be reusable package for using those packages in new software development. This methodology may reduce the risks in various domains of software engineering.

Keywords: Specification Mining, Reusability, Effort Estimation, Coupling, Project Management

1. INTRODUCTION

Software Engineering, it focuses on developing software systems to fulfill customers’ business problem in a simplest way. Hence project development activities are organized in a proper manner to track the progress of any software project. Project Management Team involved producing project plan by assessing the available resources in industry. The project plan should be effective one for satisfying both development and customer’s requirements. To make such characteristic in development domain the effort estimation should be done very prior. For doing effort estimation the available resources and their level of availability should be accounted. In software domain some software packages may not be categorized as reusable package. But through experience the developer can prefer such software packages for further use in the new project construction. As well as to make that package as usable one how much stuff or effort needed to be calculated. To find that package modification effort, in this paper we proposed a technique based on existing available software packages.

1.1 Software Project Management

Developing a project is a critical task due to satisfy the needs of both clients and software firm. The clients may not be technical person. Hence it must be very difficult to understand clients’ requirements to startup the development activities. The project management team comes to handle various activities in development side. Those are

- Effort Estimation
- Requirements Management
- Resource Management

- Risk Management
- Quality Management

The above management activities should be done properly by the project management team to deliver the software with specified quality attributes. Here the ROI (Return on Investment) will be evaluated after the business deal. To measure ROI and increase the ROI the ‘Effort Estimation’ will be done as per the available resources in industry side. This activity is the initial activity of developing any system in engineering fields. It is discussed in the following sections.

1.2 Software Effort Estimation

The two types of effort estimation techniques such as ‘Top-Down’ and ‘Bottom-up’ are used to in software industry to propose a project plan. The first technique calculates the effort for total system and then subsystems can get the effort for their construction. But in ‘Bottom-up’ approach first the effort for subsystems are identified and then through that the effort for total systems can be found. The COCOMO model will be used in software industry for getting accurate result of effort estimation for planning the project development. During effort estimation the cost, resources, manpower, machines, time and other similarities between the projects are the parameters of the estimation.

1.2.1 Modification Effort

During development the developer may have an idea to acquire some software packages to develop his module. It may not be proposed in the project plan. If it is revealed by the developer that frequently he used a particular software
package with little modification then calculated effort is wasted for that particular module. By modifying the existing software packages as reusable one that may help in upcoming project plan. So modification effort has to be calculated for making a non-reusable package as reusable one. Through that activity they can take a decision on whether go for modification or purchasing suitable components from the market.

1.3 Specification Mining

In software engineering ‘Specification Mining’ used for taking decisions for different activities involved in software development life cycle. It can be used software testing phase also for checking the characteristics made in the software. It is not a data mining approach. A small collection of data sets from the software development are used to construct the specification mining.

1.4 Package Specification Mining

In this paper we proposed the technique to have package details in Specification Mining for further usage in development. In knowledge management system all the details of developed software can be stored. But analyzing unwanted details takes much time and it wastes effort for doing that activity. So by taking particular details for choosing decisions will be a best method. Only essential features of software packages are taken to record in the specification mining.

1.5 Software Testing

It is mandatory one in any engineering field for verifying and validating the requirements. In software development many types of testing are proposed to check different requirements before deploying the system in customer business environment. The specification mining can be used to record proper test cases for testing any new software system. And that can be used for generating test cases automatically.

2. PROPOSED METHODOLOGY

The reusability factor of software java packages is considered to estimate required effort for modifying any existing software packages. During integration testing side itself the reusability factor will be measured and it should be documented for further usage in any software platform.

2.1 Analyzing Metrics of Reusability

To measure the reusability of software packages the ‘Coupling’ metrics may be required.

- Import Coupling (IC)
- Export Coupling (EC)

In this paper we take above types of Coupling to measure the ‘Instability’ factor. The formulae required for deriving ‘Instability’ is given below.

\[\text{Instability} = \frac{\text{IC} + \text{EC}}{\text{EC}} \]

The value of instability of any software package will be in the range of 0 to 1.

If Instability = 1 then that package is fully complex due to very high in and out communication such as data passing or control passing between modules. So that package is very difficult to redesign to make it as reusable package for deploying in any project construction.

If Instability value lies in between 0 to 0.5 may be considered for further modification.

2.2 Structure of Package Specification Mining

In this proposed methodology we take specification mining as ‘Package Specification Mining’ for identifying modification effort. And here we preferred only few package details to be maintained in specification mining.

The following table shows the data about package to be maintained in the specification mining.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Package Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Package Name</td>
</tr>
<tr>
<td>2</td>
<td>Amount of Services</td>
</tr>
<tr>
<td>3</td>
<td>Complexity</td>
</tr>
<tr>
<td>4</td>
<td>Instability value</td>
</tr>
<tr>
<td>5</td>
<td>Reusable or Not</td>
</tr>
<tr>
<td>6</td>
<td>Who Developed it?</td>
</tr>
<tr>
<td>7</td>
<td>Memory Size</td>
</tr>
</tbody>
</table>
Package Name: Each package has technical name to understand its objective in the developed system. So the technical team put perfect technical word associated to the system functionality.

Amount of Services: This property describes the number of services grouped in a single package or component. It is also essential to know the usefulness of it in the used systems.

Complexity: The complexity of source code has to be measured for future modification. If it is in high complexity then huge amount of resources may be required for modification. So it may cause some problems in resource utilization.

Instability: This field’s value can help the proposed methodology for checking its stability. It has a reason that if it is still instable after some modification then it may not be useful. It may affect system performance when it is not stable.

Reusable or Not: It indicates the level of the package reusable. It describes that communication among software package or components in the system.

Who Developed?: This field has the name of the developed who developed that particular module or package in the software system. Keeping the technical developer detail will help to appoint him for future modification, because already he had technical experience in that proposed module. So appointing the same expert can reduce some effort for doing modification.

Memory Size: It is another constraint in the configuration of the system. After modification if the takes huge memory space from its original memory space it may disturb the system performance while it is under usage.

The above parameters are used to take a decision for satisfying the objectives of the project management team. The activities of the proposed methodology described in the following section.

2.3 Steps in Proposed System

1. Scan Source code of the system
2. Finding Packages and Packages’ elements
3. Measure Package Metrics (Package Specification)
 Coupling and Types of Coupling
 Stability through Instability
4. If Coupling>20 then ‘High Coupling’
 Else
 ‘Low Coupling’
5. Identify types of Coupling
 Import Coupling (IC) & Export Coupling (EC)
6. Compute Instability (I)
7. Record All Metrics’ values
8. Apply Specification Mining

\[I = \frac{IC}{EC} \]

If I==0 Then ‘Package is Stable’
If I==1 Then ‘Package is not Stable & High Coupling’
If 1<1 && I>0 Then ‘Some Effort Needed to become Stable’

The above script describes the activities to be done in the proposed system.

3. RESULTS AND DISCUSSIONS

Designing specification mining is a tuff task in software engineering field, because different details may be required in different software development phase. So here we plan to have a decision support system for taking decisions on purchasing reusable components from the market. If that purchased reusable component is not supporting for further modification then that purchase may be a useless one. Even it is supporting for enhancement appointing or identifying such experts will be a difficult one due to code study or complexity of its code.

4. MERITS AND DEMERITS

Here we proposed package based specification mining for taking decisions for designing reusable packages which need low effort. So, resource utilization can be improved by admitting idle resources to modify the existing eligible package to be modified as reusable one. Through that project plan can be prepared very easily. Here specification mining contains the details of developers who designed the existing software packages. Hence that helps the project management team to allot such human resource for improving the features of those software package elements. These are the advantages of using package specification mining.

This proposed methodology has few drawbacks. Those are listed below.
* Collecting details takes huge time
* Additional system memory space used for keeping essential package attributes values
* Applying suitable algorithm for getting expected result from package specification mining.

CONCLUSIONS

Measuring the required effort for proposing a modification in the existing package will lot of support to project management and to the development team. But choosing suitable parameters for taking decisions is important one. So the specification mining can help the industry to get an idea very quickly for a decision. This proposed system works based on the reusability level of the software package. This is very useful parameter for improving the quality in all aspects in software development.
REFERENCES

BIOGRAPHIES

P. Ranjani is Assistant Professor in Department of IT, Faculty of Engineering at Avinashilingam University, Coimbatore. She is having 6 years of teaching experience. And her areas of interests are Software Testing, Data Mining and MANETs.

R. Kamalraj pursuing Ph.D. degree in Software Testing and Quality Management at Anna University of Technology, Coimbatore. He is having 9 years of teaching experience. At present he is working as an Assistant Professor in the Department of Computer Science and Engineering at SNS College of Technology, Coimbatore. His research interests include Software Testing, Software Quality Management and Data Mining.